Chapter 14 Exam Pool Questions

- 1. Which of the following represents a dynamic equilibrium?
 - a) an open pan of boiling water
 - b) two people of equal mass balanced on the ends of a seesaw
 - c) a coin spinning in mid-air
 - d) a stoppered flask half full of water
 - e) an object traveling at a constant speed
- A 20.0-L vessel at 700 K initially contains HI(g) at a pressure of 6.20 atm; at equilibrium, it is found that the partial pressure of H₂(g) is 0.600 atm. What is the partial pressure of HI(g) at equilibrium?
 2HI(g) → H₂(g) + I₂(g)
 - a) 6.20 atm
 - b) 5.60 atm
 - c) 0.600 atm
 - d) 5.00 atm
 - e) 6.80 atm
- 3. Apply the law of mass action to obtain the equilibrium-constant expression for the following reaction: $2X(g) + Y(g) \rightleftharpoons 3W(g) + V(g)$

- 4. Which of the following can we predict from an equilibrium constant for a reaction? 1. The extent of a reaction
 - 2. Whether the reaction is fast or slow

3. Whether the reaction is exothermic or endothermic

- a) 1 only
- b) 2 only
- c) 3 only
- d) 1 and 2 only
- e) 1 and 3 only

5. What is the expression for K_c for the following equilibrium? CaSO₃(s) \rightleftharpoons CaO(s) + SO₂(g)

a)	$\frac{\left[\text{CaO}\mathbf{I}\text{SO}_2\right]}{\left[\text{CaSO}_3\right]}$
b)	[CaO][SO ₂]
c)	$[SO_2]$
d)	$\frac{1}{[SO_2]}$
e)	$\frac{\left[CaSO_{3}\right]}{\left[CaO\left[SO_{2}\right]\right]}$

6. Nitrogen trifluoride decomposes to form nitrogen and fluorine gases according to the following equation: $2NF_3(g) \rightleftharpoons N_2(g) + 3F_2(g)$

When 2.06 mol of NF₃ is placed in a 2.00-L container and allowed to come to equilibrium at 800 K, the mixture is found to contain 0.0227 mol of N₂. What is the value of K_p at this temperature ($R = 0.0821 \text{ L} \cdot \text{atm}/(\text{K} \cdot \text{mol})$)?

- a) 1.77×10^{-6}
- b) 4.43×10^{-7}
- c) 1.91×10^{-3}
- d) 1.83×10^{-3}
- e) 1.73×10^{-6}
- 7. At 400 K, an equilibrium mixture of H₂, I₂, and HI consists of 0.054 mol H₂, 0.019 mol I₂, and 0.059 mol HI in a 1.00-L flask. What is the value of K_p for the following equilibrium? ($R = 0.0821 \text{ L} \cdot \text{atm}/(\text{K} \cdot \text{mol})$) 2HI(g) \rightleftharpoons H₂(g) + I₂(g)
 - a) 3.4
 - b) 21
 - c) 0.29
 - d) 0.017
 - e) 58
- 8. For which of the following reactions are the numerical values of K_p and K_c the same? 1. $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
 - 2. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - 3. $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
 - a) 1 only
 - b) 2 only
 - c) 1 and 2 only
 - d) 2 and 3 only
 - e) 1, 2, and 3

9. Consider the following equilibrium: $\frac{1}{2}N_2O_4(g) \rightleftharpoons NO_2(g); K_c = 3.3 \text{ at } 100^{\circ}\text{C}$

For which of the following equilibria is K_c less than 3.3 at 100°C?

- a) $2N_2O_4(g) \rightleftharpoons 4NO_2(g)$
- b) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$
- c) $4N_2O_4(g) \rightleftharpoons 8NO_2(g)$
- d) $3N_2O_4(g) \rightleftharpoons 6NO_2(g)$ e) $\frac{1}{4}N_2O_4(g) \rightleftharpoons \frac{1}{2}NO_2(g)$
- 10. What is the K_p equilibrium-constant expression for the following equilibrium? Ti(s) + 2Cl₂(g) \rightleftharpoons TiCl₄(l)

a)
$$\frac{1}{P_{Cl_2}^2}$$

b) $\frac{1}{P_{Cl_2}}$
c) $P_{Cl_2}^2$
d) $P_{Cl_2}^2$
e) $\frac{P_{TiCl_4}}{P_{Ti}P_{Cl_2}^2}$

11. What is the K_c equilibrium-constant expression for the following equilibrium? $NiO(s) + H_2(g) \implies Ni(s) + H_2O(g)$

a)
$$\begin{bmatrix} \text{NiO} \\ \hline \\ \text{INi} \\ \hline \\ \text{INi} \\ \hline \\ \text{IH}_2 O \end{bmatrix}$$

b)
$$\begin{bmatrix} \text{Ni} \\ \hline \\ \\ \hline \\ \text{INiO} \\ \hline \\ \\ \text{IH}_2 \end{bmatrix}$$

c)
$$\begin{bmatrix} \text{Ni} \\ \hline \\ \\ \hline \\ \\ \text{IH}_2 O \end{bmatrix}$$

d)
$$\begin{bmatrix} \text{H}_2 \\ \hline \\ \\ \\ \hline \\ \\ \text{H}_2 O \end{bmatrix}$$

e)
$$\begin{bmatrix} \text{H}_2 O \\ \\ \\ \\ \\ \\ \end{bmatrix}$$

- For which of the following reactions will the reactant experience the largest degree of decomposition upon 12. reaching equilibrium at 500 K?
 - $\begin{array}{c} 2\text{SO}_{3}(g) \rightleftharpoons 2\text{SO}_{2}(g) + O_{2}(g); K_{p} = 1.3 \times 10^{-5} \\ 2\text{NOCl}(g) \rightleftharpoons 2\text{NO}(g) + Cl_{2}(g); K_{p} = 1.7 \times 10^{-2} \\ 2\text{NO}_{2}(g) \rightleftharpoons 2\text{NO}(g) + O_{2}(g); K_{p} = 5.9 \times 10^{-5} \\ 2\text{NOF}(g) \rightleftharpoons 2\text{NO}(g) + F_{2}(g); K_{p} = 1.2 \times 10^{-26} \\ 2\text{NO}_{2}\text{F}(g) \rightleftharpoons 2\text{NO}_{2}(g) + F_{2}(g); K_{p} = 6.6 \times 10^{-22} \end{array}$ a)
 - b)
 - c)
 - d)
 - e)
- Which of the following is always true for a reaction whose value of K_c is 4.4×10^4 ? 13.
 - The reaction occurs slowly. a)
 - The reaction occurs quickly. b)
 - At equilibrium, the reaction mixture is product-favored. c)
 - d) At equilibrium, the reaction mixture is reactant-favored.
 - At equilibrium, there are equal moles of reactants and products. e)

14. Consider the following reaction:

 $2\text{HF}(g) \rightleftharpoons \text{H}_2(g) + \text{F}_2(g)$ (K = 1.00 × 10⁻²)

Given that 1.00 mol of HF(g), 0.360 mol of $H_2(g)$, and 0.750 mol of $F_2(g)$ are mixed in a 5.00-L flask, determine the reaction quotient, Q.

- a) Q = 0.0540
- b) Q = 0.270
- c) Q = 0.0675
- d) Q = 2.11
- e) none of these
- 15. The reaction quotient for a system is 7.2×10^2 . If the equilibrium constant for the system is 36, what will happen as equilibrium is approached?
 - a) There will be a net gain in product.
 - b) There will be a net gain in reactant.
 - c) There will be a net gain in both product and reactant.
 - d) There will be no net gain in either product or reactant.
 - e) The equilibrium constant will decrease until it equals the reaction quotient.
- 16. For the reaction $2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g)$, $K_c = 0.290$ at 400 K. If the initial concentrations of HI, H₂, and I₂ are all 1.50×10^{-3} *M* at 400 K, which one of the following statements is correct?
 - a) The system is at equilibrium.
 - b) The concentrations of HI and I_2 will increase as the system is approaching equilibrium.
 - c) The concentrations of H_2 and HI will decrease as the system is approaching equilibrium.
 - d) The concentration of HI will increase as the system is approaching equilibrium.
 - e) The concentrations of H_2 and I_2 will increase as the system is approaching equilibrium.
- 17. For the equilibrium $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, $K_c = 4.0$ at 228°C. If pure PCl_5 is placed in a 1.00-L container and allowed to come to equilibrium, and the equilibrium concentration of $PCl_5(g)$ is 0.13 *M*, what is the equilibrium concentration of PCl_3 ?
 - a) 0.065 *M*
 - b) 0.13 *M*
 - c) 0.44 *M*
 - d) 0.72 *M*
 - e) 0.0042 *M*
- 18. In an experiment, 0.30 mol H₂ and 0.30 mol I₂ are mixed in a 1.00-L container, and the reaction forms HI. If $K_c = 49$. for this reaction, what is the equilibrium concentration of HI? I₂(g) + H₂(g) \rightleftharpoons 2HI(g)
 - a) 0.53 *M*
 - b) 0.58 M
 - c) 0.040 M
 - d) 0.47 M
 - e) 0.075 M

19. Drying agents called desiccants can be based on the cobalt complexes shown as Co(H

$$(2O)_6^{2^+}(aq) + 4 \operatorname{Cl}^-(aq) \rightleftharpoons \operatorname{CoCl}_4^{2^-}(aq) + 6\operatorname{H}_2O(l)$$

If this desiccant is moist, then its color will be

- clear a)
- b) pink
- blue c)
- pinkish blue d)
- black e)

20. Consider the following equilibrium: $PCl_3(g) + Cl_2(g) \implies PCl_5(g); \Delta H = -92 \text{ kJ}$

The concentration of PCl₃ at equilibrium may be increased by

- a) increasing the pressure.
- b) adding Cl_2 to the system.
- c) decreasing the temperature.
- d) the addition of neon.
- the addition of PCl₅. e)
- 21. Carbon monoxide is toxic because it can successfully compete with oxygen for hemoglobin (Hb) sites according to the following equilibrium: $Hb(O_2)_4(aq) + 4CO(g) \implies Hb(CO)_4(aq) + 4O_2(g)$

From Le Châtelier's principle, CO poisoning is reversed by

- increasing the O₂ pressure. a)
- increasing the CO pressure. b)
- increasing the CO₂ pressure. c)
- decreasing the amount of Hb. d)
- increasing the amount of Hb. e)
- 22. What effect will spraying liquid water into a system have if NH_3 is far more soluble in water than is N_2 or $H_2?$

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

- This will not affect the system. a)
- b) More $NH_3(g)$ will form.
- More $N_2(g)$ will form. c)
- Less $NH_3(g)$ will form. d)
- e) More $H_2(g)$ will form.
- 23. Which of the following equilibria would not be affected by pressure changes at constant temperature?
 - $CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO_2(g)$ a)
 - $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ b)
 - $2 \text{Hg}(l) + \text{O}_2(g) \rightleftharpoons 2 \text{HgO}(s)$ c)
 - $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ d)
 - e) $2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(l)$

- 24. Which of the following equilibria would be affected by volume changes at constant temperature? 1. $2NO(g) + 3F_2(g) \implies 2F_3NO(g)$
 - 2. $PCl_3(g) + Cl_2(g) \Longrightarrow PCl_5(g)$

3. $O_3(g) + NO(g) \implies NO_2(g) + O_2(g)$

- a) 1 only
- b) 2 only
- c) 3 only
- d) 1 and 2 only
- e) 1, 2, and 3
- 25. For which of the following systems at equilibrium and at constant temperature will decreasing the volume cause the equilibrium to shift to the right?
 - a) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - b) $2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g)$
 - c) $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$
 - d) $NH_4Cl(s) \implies NH_3(g) + HCl(g)$
 - e) $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$
- 26. In which of the following reactions does an instantaneous increase in the volume of the reaction vessel favor formation of the products?
 - a) $MgO(s) + CO_2(g) \implies MgCO_3(s)$
 - b) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
 - c) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
 - d) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - e) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- 27. Consider the following equilibrium at 25°C: 2ICl(g) \rightleftharpoons I₂(g) + Cl₂(g); $\Delta H = 27$ kJ; $K_p = 6.2 \times 10^{-6}$

Which of the following would be true if the temperature were increased to 100°C?

- 1. The value of Kp would increase.
- 2. The concentration of ICl(g) would increase.

3. The partial pressure of I_2 would increase.

- a) 1 only
- b) 2 only
- c) 3 only
- d) 1 and 2 only
- e) 1 and 3 only

 For the following reaction system at equilibrium, which one of the changes below would cause the equilibrium to shift to the right? Br₂(g) + 2NO(g) → 2NOBr(g); ΔH° = -30 kJ

a) Increase the volume of the reaction vessel.

- b) Remove some NO.
- c) Add some NOBr.
- d) Remove some Br_2 .
- e) Decrease the temperature.
- 29. Consider the following system at equilibrium: $N_2(g) + 3H_2(g) \implies 2NH_3(g) + 92.94$ kJ. Which of the following changes will shift the equilibrium to the right?
 - I. increasing the temperature
 - II. decreasing the temperature
 - III. increasing the volume
 - IV. decreasing the volume
 - V. removing some NH₃
 - VI. adding some NH₃
 - VII. removing some N₂
 - VIII. adding some N₂
 - a) I, IV, VI, VII
 - b) II, III, V, VIII
 - c) I, VI, VIII
 - d) I, III, V, VII
 - e) II, IV, V, VIII
- 30. Which of the following statements is <u>incorrect</u> concerning the addition of a catalyst to an equilibrium reaction system?
 - a) The catalyst increases the rate of both the forward and the reverse reaction.
 - b) If the reactants are capable of forming many different products, a catalyst may selectively speed up one reaction over another.
 - c) The catalyst speeds up the attainment of equilibrium.
 - d) The catalyst increases the yield of the products.
 - e) The catalyst is not consumed in either the forward or the reverse reaction.

ANSWERS

Question	Answer
1	d
2	d
3	b
4	a
5	с
2 3 4 5 6 7 8 9	с
7	c
8	d
9	e
10	a
11	e
12	b
13 14 15 16	с
14	b
15	b
16	d
17	d
18 19	d
19	b
20	e
21	а
22	b
23	d
24	d
25	a
26	b
26 27	e
28	e
29	e
30	d