Chapter 14 Exam Pool Questions

1. Which of the following represents a dynamic equilibrium?
a) an open pan of boiling water
b) two people of equal mass balanced on the ends of a seesaw
c) a coin spinning in mid-air
d) a stoppered flask half full of water
e) an object traveling at a constant speed
2. A $20.0-\mathrm{L}$ vessel at 700 K initially contains $\mathrm{HI}(g)$ at a pressure of 6.20 atm ; at equilibrium, it is found that the partial pressure of $\mathrm{H}_{2}(g)$ is 0.600 atm . What is the partial pressure of $\mathrm{HI}(g)$ at equilibrium?
$2 \mathrm{HI}(g) \rightleftarrows \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$
a) 6.20 atm
b) $\quad 5.60 \mathrm{~atm}$
c) 0.600 atm
d) 5.00 atm
e) 6.80 atm
3. Apply the law of mass action to obtain the equilibrium-constant expression for the following reaction: $2 \mathrm{X}(g)+\mathrm{Y}(g) \rightleftarrows 3 \mathrm{~W}(g)+\mathrm{V}(g)$
a) $\quad[\mathrm{X}]^{2}[\mathrm{Y}][\mathrm{W}]^{3}[\mathrm{~V}]$
b) $\frac{[\mathrm{W}]^{3}[\mathrm{~V}]}{[\mathrm{X}]^{2}[\mathrm{Y}]}$
c)

d)

4. Which of the following can we predict from an equilibrium constant for a reaction?
5. The extent of a reaction
6. Whether the reaction is fast or slow
7. Whether the reaction is exothermic or endothermic
a) 1 only
b) 2 only
c) 3 only
d) 1 and 2 only
e) 1 and 3 only
8. What is the expression for K_{c} for the following equilibrium?
$\mathrm{CaSO}_{3}(s) \rightleftarrows \mathrm{CaO}(s)+\mathrm{SO}_{2}(g)$
a)

b) $[\mathrm{CaO}]\left[\mathrm{SO}_{2}\right]$
c) $\left[\mathrm{SO}_{2}\right]$
d)

$\left[\mathrm{CaSO}_{3}\right.$]
e) $[\mathrm{CaO}]\left[\mathrm{SO}_{2}\right]$
9. Nitrogen trifluoride decomposes to form nitrogen and fluorine gases according to the following equation: $2 \mathrm{NF}_{3}(g) \rightleftarrows \mathrm{N}_{2}(g)+3 \mathrm{~F}_{2}(g)$

When 2.06 mol of NF_{3} is placed in a $2.00-\mathrm{L}$ container and allowed to come to equilibrium at 800 K , the mixture is found to contain 0.0227 mol of N_{2}. What is the value of K_{p} at this temperature $(R=0.0821 \mathrm{~L}$. atm $/(\mathrm{K} \cdot \mathrm{mol})$)?
a) 1.77×10^{-6}
b) $\quad 4.43 \times 10^{-7}$
c) 1.91×10^{-3}
d) 1.83×10^{-3}
e) $\quad 1.73 \times 10^{-6}$
7. At 400 K , an equilibrium mixture of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI consists of $0.054 \mathrm{~mol} \mathrm{H}_{2}, 0.019 \mathrm{~mol} \mathrm{I}_{2}$, and 0.059 mol HI in a $1.00-\mathrm{L}$ flask. What is the value of K_{p} for the following equilibrium? $(R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol}))$ $2 \mathrm{HI}(g) \rightleftarrows \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$
a) 3.4
b) 21
c) 0.29
d) 0.017
e) 58
8. For which of the following reactions are the numerical values of K_{p} and K_{c} the same?

1. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{SO}_{3}(g)$
2. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)$
3. $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \longleftrightarrow 2 \mathrm{HI}(g)$
a) 1 only
b) 2 only
c) 1 and 2 only
d) 2 and 3 only
e) 1, 2, and 3
4. Consider the following equilibrium:
$1 / 2 \mathrm{~N}_{2} \mathrm{O}_{4}(g) \rightleftarrows \mathrm{NO}_{2}(g) ; K_{c}=3.3$ at $100^{\circ} \mathrm{C}$
For which of the following equilibria is K_{c} less than 3.3 at $100^{\circ} \mathrm{C}$?
a) $2 \mathrm{~N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 4 \mathrm{NO}_{2}(g)$
b) $\quad \mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)$
c) $4 \mathrm{~N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 8 \mathrm{NO}_{2}(g)$
d) $\quad 3 \mathrm{~N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 6 \mathrm{NO}_{2}(g)$
e) $\quad 1 / 4 \mathrm{~N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 1 / 2 \mathrm{NO}_{2}(g)$
5. What is the K_{p} equilibrium-constant expression for the following equilibrium?
$\mathrm{Ti}(s)+2 \mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{TiCl}_{4}(l)$
a) $\frac{1}{P_{C l_{2}}{ }^{2}}$
b) $\frac{1}{P_{C l_{2}}}$
c) $\quad P_{C l_{2}}{ }^{2}$
d) $\quad P_{C l_{2}}$
e) $\frac{P_{T i C l_{4}}}{P_{T i} P_{C l_{2}}{ }^{2}}$
6. What is the K_{c} equilibrium-constant expression for the following equilibrium?
$\mathrm{NiO}(s)+\mathrm{H}_{2}(g) \rightleftarrows \mathrm{Ni}(s)+\mathrm{H}_{2} \mathrm{O}(g)$
a)
$\frac{[\mathrm{NiO}]\left[\mathrm{H}_{2}\right]}{[\mathrm{Ni}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
b)

c)

d)

e)

7. For which of the following reactions will the reactant experience the largest degree of decomposition upon reaching equilibrium at 500 K ?
a) $\quad 2 \mathrm{SO}_{3}(g) \rightleftarrows 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) ; K_{p}=1.3 \times 10^{-5}$
b) $\quad 2 \mathrm{NOCl}(g) \longleftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) ; K_{p}=1.7 \times 10^{-2}$
c) $\quad 2 \mathrm{NO}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) ; K_{p}=5.9 \times 10^{-5}$
d) $2 \mathrm{NOF}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{F}_{2}(g) ; K_{p}=1.2 \times 10^{-26}$
e) $\quad 2 \mathrm{NO}_{2} \mathrm{~F}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)+\mathrm{F}_{2}(g) ; K_{p}=6.6 \times 10^{-22}$
8. Which of the following is always true for a reaction whose value of K_{c} is 4.4×10^{4} ?
a) The reaction occurs slowly.
b) The reaction occurs quickly.
c) At equilibrium, the reaction mixture is product-favored.
d) At equilibrium, the reaction mixture is reactant-favored.
e) At equilibrium, there are equal moles of reactants and products.
9. Consider the following reaction:

$$
2 \mathrm{HF}(g) \nLeftarrow \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \quad\left(K=1.00 \times 10^{-2}\right)
$$

Given that 1.00 mol of $\mathrm{HF}(g), 0.360 \mathrm{~mol}$ of $\mathrm{H}_{2}(g)$, and 0.750 mol of $\mathrm{F}_{2}(g)$ are mixed in a $5.00-\mathrm{L}$ flask, determine the reaction quotient, Q.
a) $Q=0.0540$
b) $\quad Q=0.270$
c) $\quad Q=0.0675$
d) $\quad Q=2.11$
e) none of these
15. The reaction quotient for a system is 7.2×10^{2}. If the equilibrium constant for the system is 36 , what will happen as equilibrium is approached?
a) There will be a net gain in product.
b) There will be a net gain in reactant.
c) There will be a net gain in both product and reactant.
d) There will be no net gain in either product or reactant.
e) The equilibrium constant will decrease until it equals the reaction quotient.
16. For the reaction $2 \mathrm{HI}(g) \rightleftarrows \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g), K_{c}=0.290$ at 400 K . If the initial concentrations of $\mathrm{HI}, \mathrm{H}_{2}$, and I_{2} are all $1.50 \times 10^{-3} \mathrm{M}$ at 400 K , which one of the following statements is correct?
a) The system is at equilibrium.
b) The concentrations of HI and I_{2} will increase as the system is approaching equilibrium.
c) The concentrations of H_{2} and HI will decrease as the system is approaching equilibrium.
d) The concentration of HI will increase as the system is approaching equilibrium.
e) The concentrations of H_{2} and I_{2} will increase as the system is approaching equilibrium.
17. For the equilibrium $\mathrm{PCl}_{5}(g) \rightleftarrows \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g), K_{c}=4.0$ at $228^{\circ} \mathrm{C}$. If pure PCl_{5} is placed in a $1.00-\mathrm{L}$ container and allowed to come to equilibrium, and the equilibrium concentration of $\mathrm{PCl}_{5}(g)$ is 0.13 M , what is the equilibrium concentration of PCl_{3} ?
a) 0.065 M
b) 0.13 M
c) $\quad 0.44 \mathrm{M}$
d) 0.72 M
e) 0.0042 M
18. In an experiment, $0.30 \mathrm{~mol} \mathrm{H}_{2}$ and $0.30 \mathrm{~mol} \mathrm{I}_{2}$ are mixed in a $1.00-\mathrm{L}$ container, and the reaction forms HI . If $K_{c}=49$. for this reaction, what is the equilibrium concentration of HI?
$\mathrm{I}_{2}(g)+\mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{HI}(g)$
a) 0.53 M
b) 0.58 M
c) 0.040 M
d) 0.47 M
e) 0.075 M
19. Drying agents called desiccants can be based on the cobalt complexes shown as

$$
\underset{\text { pink }}{\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(a q)}+\underset{\text { clear }}{4 \mathrm{Cl}^{-}(a q)} \underset{\text { blue }}{\mathrm{CoCl}_{4}{ }^{2-}(a q)}+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

If this desiccant is moist, then its color will be
a) clear
b) pink
c) blue
d) pinkish blue
e) black
20. Consider the following equilibrium:
$\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{PCl}_{5}(g) ; \Delta H=-92 \mathrm{~kJ}$
The concentration of PCl_{3} at equilibrium may be increased by
a) increasing the pressure.
b) adding Cl_{2} to the system.
c) decreasing the temperature.
d) the addition of neon.
e) the addition of PCl_{5}.
21. Carbon monoxide is toxic because it can successfully compete with oxygen for hemoglobin (Hb) sites according to the following equilibrium:
$\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}(a q)+4 \mathrm{CO}(\mathrm{g}) \rightleftarrows \mathrm{Hb}(\mathrm{CO})_{4}(a q)+4 \mathrm{O}_{2}(g)$
From Le Châtelier's principle, CO poisoning is reversed by
a) increasing the O_{2} pressure.
b) increasing the CO pressure.
c) increasing the CO_{2} pressure.
d) decreasing the amount of Hb .
e) increasing the amount of Hb .
22. What effect will spraying liquid water into a system have if NH_{3} is far more soluble in water than is N_{2} or H_{2} ?
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)$
a) This will not affect the system.
b) More $\mathrm{NH}_{3}(g)$ will form.
c) More $\mathrm{N}_{2}(g)$ will form.
d) Less $\mathrm{NH}_{3}(g)$ will form.
e) More $\mathrm{H}_{2}(\mathrm{~g})$ will form.
23. Which of the following equilibria would not be affected by pressure changes at constant temperature?
a) $\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightleftarrows \mathrm{CO}_{2}(g)$
b) $\quad \mathrm{CaCO}_{3}(s) \rightleftarrows \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
c) $2 \mathrm{Hg}(l)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{HgO}(s)$
d) $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \rightleftarrows \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
e) $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(l)$
24. Which of the following equilibria would be affected by volume changes at constant temperature?

1. $2 \mathrm{NO}(g)+3 \mathrm{~F}_{2}(g) \rightleftarrows 2 \mathrm{~F}_{3} \mathrm{NO}(g)$
2. $\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{PCl}_{5}(g)$
3. $\mathrm{O}_{3}(g)+\mathrm{NO}(g) \rightleftarrows \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
a) 1 only
b) 2 only
c) 3 only
d) 1 and 2 only
e) 1, 2, and 3
4. For which of the following systems at equilibrium and at constant temperature will decreasing the volume cause the equilibrium to shift to the right?
a) $\quad \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)$
b) $\quad 2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftarrows 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)$
c) $\quad 2 \mathrm{NO}_{2}(g) \longleftrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
d) $\quad \mathrm{NH}_{4} \mathrm{Cl}(s) \rightleftarrows \mathrm{NH}_{3}(g)+\mathrm{HCl}(g)$
e) $\quad \mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows 2 \mathrm{HCl}(g)$
5. In which of the following reactions does an instantaneous increase in the volume of the reaction vessel favor formation of the products?
a) $\mathrm{MgO}(s)+\mathrm{CO}_{2}(g) \rightleftarrows \mathrm{MgCO}_{3}(s)$
b) $\quad \mathrm{PCl}_{5}(g) \rightleftarrows \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
c) $\quad \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftarrows 2 \mathrm{HI}(g)$
d) $\quad \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)$
e) $\quad \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)$
6. Consider the following equilibrium at $25^{\circ} \mathrm{C}$:
$2 \mathrm{ICl}(g) \rightleftarrows \mathrm{I}_{2}(g)+\mathrm{Cl}_{2}(g) ; \Delta H=27 \mathrm{~kJ} ; K_{p}=6.2 \times 10^{-6}$
Which of the following would be true if the temperature were increased to $100^{\circ} \mathrm{C}$?
7. The value of Kp would increase.
8. The concentration of $\mathrm{ICl}(g)$ would increase.
9. The partial pressure of I_{2} would increase.
a) 1 only
b) 2 only
c) 3 only
d) 1 and 2 only
e) 1 and 3 only
10. For the following reaction system at equilibrium, which one of the changes below would cause the equilibrium to shift to the right?
$\mathrm{Br}_{2}(g)+2 \mathrm{NO}(g) \rightleftarrows 2 \mathrm{NOBr}(g) ; \Delta H^{\circ}=-30 \mathrm{~kJ}$
a) Increase the volume of the reaction vessel.
b) Remove some NO.
c) Add some NOBr .
d) Remove some Br_{2}.
e) Decrease the temperature.
11. Consider the following system at equilibrium: $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)+92.94 \mathrm{~kJ}$. Which of the following changes will shift the equilibrium to the right?
I. increasing the temperature
II. decreasing the temperature
III. increasing the volume
IV. decreasing the volume
V. removing some NH_{3}
VI. adding some NH_{3}
VII. removing some N_{2}
VIII. adding some N_{2}
a) I, IV, VI, VII
b) II, III, V, VIII
c) I, VI, VIII
d) I, III, V, VII
e) II, IV, V, VIII
12. Which of the following statements is incorrect concerning the addition of a catalyst to an equilibrium reaction system?
a) The catalyst increases the rate of both the forward and the reverse reaction.
b) If the reactants are capable of forming many different products, a catalyst may selectively speed up one reaction over another.
c) The catalyst speeds up the attainment of equilibrium.
d) The catalyst increases the yield of the products.
e) The catalyst is not consumed in either the forward or the reverse reaction.

ANSWERS

Question	Answer
1	d
2	d
3	b
4	a
5	c
6	c
7	c
8	d
9	e
10	e
11	b
12	c
13	b
14	b
15	d
16	d
17	d
18	b
19	e
20	a
21	b
22	d
23	d
24	a
25	b
26	e
27	d
28	
29	20
30	
18	

