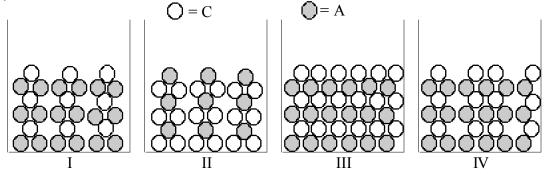

Chapter 17 Pool Questions


Cation C and anion A form an ionic compound for which $K_{sp} = s^2$, where *s* is the molar solubility of the ionic compound. Which of Figures I–III represent(s) possible results of the mixing of an aqueous solution 1. containing cation C with an aqueous solution containing anion A?

- a) only I
- b) only II
- only III c)
- both I and II d)
- both I and III e)

2. What is the solubility product expression for $Th(IO_3)_4$?

- a)
- b)
- c)
- d)
- $K_{sp} = [Th^{4+}][4IO_3^{-}]^4$ $K_{sp} = [Th^{4+}][IO_3^{-}]$ $K_{sp} = [Th^{4+}][IO_3^{-}]^4$ $K_{sp} = [Th][IO_3]^4$ $K_{sp} = [Th^{4+}][IO_3^{-}]$ e)
- 3. Figures I-IV represent ionic compounds formed upon the mixing of an aqueous solution containing cation C with an aqueous solution containing anion A. Identify the figure(s) that represent(s) products for which $K_{sp} = 108s^5$, where s is the molar solubility of the ionic compound.

- only I a)
- b) only II
- c) only III
- d) only IV
- both I and II e)

4. What is the relationship between molar solubility (s) and K_{sp} for calcium fluoride?

a)
$$s = (K_{sp})^{1/2}$$

b) $s = (K_{sp})^{1/3}$
c) $s = \left(\frac{K_{sp}}{4}\right)^{1/3}$
d) $s = \left(\frac{K_{sp}}{6}\right)^{1/3}$.
e) $s = \left(\frac{K_{sp}}{27}\right)^{1/4}$.

- 5. The solubility of $CaSO_4$ in pure water at 0°C is 1.08 g/L. What is the value of the solubility product? 7.94×10^{-3} a)
 - b) 1.08×10^{-3}
 - $8.91 imes 10^{-2}$ c)
 - 6.30×10^{-5} d)
- 6. Rank the following salts in order of increasing molar solubility.

<u>Salt</u>	$\underline{K}_{\underline{sp}}$
$BaSO_4$	1.1×10^{-10}
AgCl	1.8×10^{-10}
BaCO ₃	9.1×10^{-9}
CdS	8×10^{-27}
PbSO ₄	1.8×10^{-8}

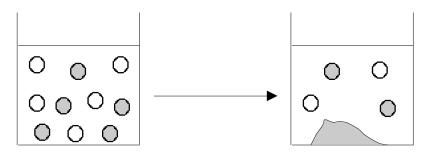
- $CdS < AgCl < BaCO_3 < BaSO_4 < PbSO_4$ a)
- PbSO₄ < BaCO₃ < AgCl < BaSO₄ < CdS b)
- $CdS < AgCl < BaSO_4 < BaCO_3 < PbSO_4$ c)
- $PbSO_4 < BaCO_3 < BaSO_4 < AgCl < CdS$ d)
- e) $CdS < BaSO_4 < AgCl < BaCO_3 < PbSO_4$
- 7. What is the solubility (in g/L) of silver(I) iodide at 25°C? The solubility product constant for silver(I) what is the solubility (in g/L iodide is 8.3×10^{-17} at 25°C. a) 1.9×10^{-14} g/L b) 9.7×10^{-15} g/L c) 1.1×10^{-2} g/L d) 6.5×10^{-4} g/L e) 2.1×10^{-6} g/L
- 8. What is the molar solubility of barium fluoride at 25°C? The solubility product constant for barium fluoride is 1.0×10^{-6} at 25°C.
 - a) $1.0 \times 10^{-3} M$
 - b)
 - $\begin{array}{c} 1.0 \times 10^{-1} M \\ 6.3 \times 10^{-3} M \\ 5.0 \times 10^{-7} M \\ 1.0 \times 10^{-6} M \end{array}$ c)
 - d)
 - $1.6 \times 10^{-2} M$ e)

9. Pure water is saturated with slightly soluble calcium fluoride, CaF₂. Which of the following is true concerning the equilibrium concentration of Ca²⁺?

a)
$$[Ca^{2+}] = K_{sp}$$

b) $[Ca^{2+}] = \sqrt{K_{sp}}$
c) $[Ca^{2+}] = \frac{K_{sp}}{2 \times [F^{-}]}$
d) $[Ca^{2+}] = \sqrt[3]{\frac{K_{sp}}{4}}$

e)
$$[Ca^{2+}] = [F^{-}]$$


- 10. Which of the following salts has the lowest molar solubility in water?
 - a)
 - b)
 - c)
 - d)
 - SrCO₃ ($K_{sp} = 9.3 \times 10^{-10}$) PbI₂ ($K_{sp} = 6.5 \times 10^{-9}$) AgBr ($K_{sp} = 5.0 \times 10^{-13}$) Fe(OH)₂ ($K_{sp} = 8 \times 10^{-16}$) Ni(OH)₂ ($K_{sp} = 2.0 \times 10^{-15}$) e)
- What is the pH of a saturated solution of Fe(OH)₂? For Fe(OH)₂, $K_{sp} = 8.0 \times 10^{-16}$. 11.
 - a) 5.23
 - 4.93 b)
 - c) 8.77
 - d) 9.07
 - 7.00 e)

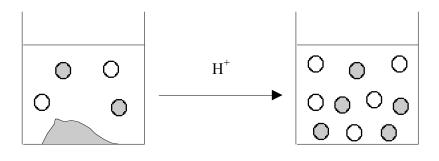
12. Rank the following salts in order of increasing molar solubility.

<u>Salt</u>	\underline{K}_{sp}
AgSCN	1.0×10^{-12}
Ag_2CrO_4	1.1×10^{-12}
Ag_3PO_4	1.0×10^{-16}

- $Ag_3PO_4 < Ag_2CrO_4 < AgSCN$ a)
- $AgSCN < Ag_2CrO_4 < Ag_3PO_4$ b)
- $AgSCN < Ag_3PO_4 < Ag_2CrO_4$ c)
- $Ag_3PO_4 < AgSCN < Ag_2CrO_4$ d)
- $Ag_2CrO_4 < AgSCN < Ag_3PO_4$ e)
- In which of these solutions would silver(I) carbonate have the lowest molar solubility? For silver(I) 13. carbonate, $K_{sp} = 8.5 \times 10^{-12}$.
 - pure water a)
 - b) $0.1 M \text{AgNO}_3$
 - 0.01 M AgNO₃ c)
 - d) 0.1 M Na₂CO₃
 - 0.03 MH₂CO₃ e)

The figure below represents the result of adding which of the following aqueous solutions to a filtered, 14. saturated solution of AgCl?

- only HCl(aq) a)
- only HNO₃(aq) b)
- only NaCl(aq) c)
- d) HCl(aq) or HNO₃(aq)
- e) HCl(aq) or NaCl(aq)
- What is the concentration of silver(I) ion in a saturated solution of silver(I) carbonate containing 0.0070 M 15. Na₂CO₃? For Ag₂CO₃, $K_{sp} = 8.6 \times 10^{-12}$. a) $8.0 \times 10^{-9} M$ b) $2.0 \times 10^{-9} M$ c) $3.5 \times 10^{-5} M$


 - $6.0 \times 10^{-4} M$ d)
 - $8.0 \times 10^{-4} M$ e)

What is the molar solubility of MgF₂ in a 0.42 *M* NaF solution? For MgF₂, $K_{sp} = 8.4 \times 10^{-8}$. 16.

- 1.0×10^{-7} a)
- 2.0×10^{-7} b)
- 4.8×10^{-7} c)
- 1.4×10^{-4} d)
- 7.1×10^{-4} e)
- 17. Which of the following will apply to a saturated solution of an ionic compound?
 - $Q_c > K_{sp}$ a)
 - $Q_c < K_{sp}$ b)
 - $\tilde{Q}_c = K_{sp}$ c)
 - $\tilde{Q}_c = 1$ d)
 - $\bar{K}_{sp} = 1$ e)
- Suppose 50.00 mL of $2.0 \times 10^{-5} M$ Fe(NO₃)₃ is added to 50.00 mL of $2.0 \times 10^{-4} M$ KIO₃. Which of the 18. following statements is true? For Fe(IO₃)₃, $K_{sp} = 1.0 \times 10^{-14}$.
 - a) A precipitate forms because $Q_c > K_{sp}$.
 - A precipitate forms because $\tilde{Q}_c < K_{sp}$. b)
 - c) No precipitate forms because $Q_c > K_{sp}$.
 - No precipitate forms because $\widetilde{Q}_c < K_{sp}$. d)
 - Nothing happens. e)

- 19. What will happen if 0.1 mol of solid silver(I) nitrate is added to 1.0 L of a saturated solution of silver(I) chromate? For Ag₂CrO₄, $K_{sp} = 2.4 \times 10^{-12}$.
 - a) The AgNO₃ will settle to the bottom without dissolving.
 - b) The concentration of Ag^+ in solution will not change.
 - c) The concentration of CrO_4^{2-} will increase.
 - d) Some Ag_2CrO_4 will precipitate.
 - e) Nothing will happen.
- 20. Suppose 50.00 mL of a 1×10^{-8} *M* solution of lead(II) nitrate is mixed with 50.00 mL of a 1×10^{-6} solution of sodium phosphate. Which of the following statements is true? For lead(II) phosphate, $K_{sp} = 1 \times 10^{-44}$.
 - a) A precipitate forms because $Q_c < K_{sp}$.
 - b) A precipitate forms because $Q_c > K_{sp}$.
 - c) No precipitate forms because $Q_c = K_{sp}$.
 - d) No precipitate forms because $Q_c < K_{sp}$.
 - e) No precipitate forms because $Q_c > K_{sp}$.
- 21. If 450 mL of $1 \times 10^{-7} M$ AgNO₃ is mixed with 450 mL of $1 \times 10^{-8} M$ NaI, what will occur? For AgI, $K_{sp} = 8.3 \times 10^{-17}$.
 - a) Silver(I) iodide will precipitate.
 - b) No precipitate will form.
 - c) Sodium nitrate will precipitate.
 - d) Silver(I) nitrate will precipitate.
 - e) Sodium iodide will precipitate.
- 22. Sodium chloride is added slowly to a solution that is 0.010 *M* in Cu⁺, Ag⁺, and Au⁺. The K_{sp} values for the chloride salts are 1.9×10^{-7} , 1.6×10^{-10} , and 2.0×10^{-13} , respectively. Which compound will precipitate first?
 - a) CuCl(s)
 - b) AgCl(*s*)
 - c) AuCl(s)
 - d) All will precipitate at the same time.
 - e) It cannot be determined.
- 23. The best explanation for the dissolution of ZnS in dilute HCl is that
 - a) the zinc ion is amphoteric.
 - b) the sulfide-ion concentration is decreased by the formation of H_2S .
 - c) the sulfide-ion concentration is decreased by oxidation to sulfur.
 - d) the zinc-ion concentration is decreased by the formation of a chloro complex.
 - e) the solubility product of $ZnCl_2$ is less than that of ZnS.
- 24. You have two salts, AgX and AgY, with very similar K_{sp} values. You know that K_a for HX is much greater than K_a for HY. Which statement will be true?
 - a) AgX is more soluble than AgY in acidic solution.
 - b) AgY is more soluble than AgX in acidic solution.
 - c) AgX and AgY are equally soluble in acidic solution.
 - d) AgX and AgY are less soluble in acidic solution than in pure water.
 - e) none of these

- In which of the following solutions would CaC_2O_4 have the highest molar solubility? 25.
 - 0.01 M Na₂C₂O₄ a)
 - 0.01 M NaHC₂O₄ b)
 - $0.01 M H_2 C_2 O_4$ c)
 - d) 0.01 M NaCl
 - 0.01 M HCl e)
- 26. The figure below represents the results of adding a strong acid to a saturated solution of an ionic compound. Which of the following could be the ionic compound?

- AgF a)
- AgCl b)
- c) AgBr
- d) AgI
- AgClO₄ e)
- What is the value of the dissociation constant, K_d , for the complex ion Cd(NH₃)₄²⁺? For Cd(NH₃)₄²⁺, K_f = 27. 1.0×10^{7} .
 - 1.0×10^{-3} a)
 - 1.0×10^{7} b)
 - 5.6×10^{1} c)
 - $2.5 imes 10^6$ d)
 - 1.0×10^{-7} e)
- Calculate the molar concentration of uncomplexed Zn^{2+} in a solution that contains 0.20 mol of $Zn(NH_3)_4^{2+}$ per liter and 0.0116 *M* NH₃ at equilibrium? The overall K_f for $Zn(NH_3)_4^{2+}$ is 3.8×10^9 . 28.
 - $2.9 \times 10^{-3} M$ $8.8 \times 10^{-3} M$ a)
 - b)
 - c)
 - $6.7 \times 10^{-4} M$ $2.0 \times 10^{-13} M$ d)
 - none of these e)

29. From the two equilibria below,

 $Ag(NH_3)_2^+(aq) \implies Ag^+(aq) + 2NH_3(aq); K_d = 5.9 \times 10^{-8}$

AgCl(s)
$$\implies$$
 Ag⁺(aq) + Cl⁻(aq); $K_{sp} = 1.8 \times 10^{-10}$

what is K_c for the following equilibrium?

 $\operatorname{AgCl}(s) + 2\operatorname{NH}_3(aq) \Longrightarrow \operatorname{Ag(NH}_3)_2^+(aq) + \operatorname{Cl}^-(aq)$

- a) 1.1×10^{-17} b) 3.1×10^{-3} c) 9.4×10^{16}
- d) 3.3×10^2
- e) 1.0×10^{-14}
- 30. In the qualitative analysis scheme for metal ions, how are the Analytical Group I cations separated from the other cations?
 - a) by addition of HCl, forming insoluble metal chlorides
 - b) by addition of H₂SO₄, forming insoluble metal sulfates
 - c) by addition of H₂S in acidic solution, forming insoluble metal sulfides
 - d) by addition of H₂S in basic solution, forming insoluble metal sulfides or hydroxides
 - e) by addition of (NH₄)₂CO₃ or (NH₄)₃PO₄, forming insoluble metal carbonates or phosphates

ANSWERS

Question	Answer
1	d
2	с
3	d
2 3 4 5 6 7	с
5	d
6	e
7	e
8	b
9	d
10	с
11	d
12	c
13	b
14	e
15 16	c
16	c
17	c
18	d
19	d
20	b
21	a
22 23	с
23	b
24 25	b
25	e
26	a
27	e
28	a
29	b
30	a