Chapter 19 Pool Questions

1. When balancing oxidation-reduction reactions in acidic solution by the half-reaction method, oxygen is balanced by adding
a) O .
b) O_{2}.
c) OH^{-}.
d) $\mathrm{H}_{2} \mathrm{O}$.
e) none of these
2. When the following oxidation-reduction reaction in acidic solution is balanced such that all coefficients are integers, what is the lowest whole-number coefficient for H^{+}, and on which side of the balanced equation should it appear?
$\mathrm{MnO}_{4}^{-}(a q)+\mathrm{Br}^{-}(a q) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{Br}_{2}(l)$
a) 1 , reactant side
b) 2 , product side
c) 4 , product side
d) 8 , reactant side
e) 16 , reactant side
3. A strip of iron is placed in a $1 M$ solution of iron(II) sulfate, and a strip of copper is placed in a $1 M$ solution of copper(II) chloride. The two solutions are connected with a salt bridge, and the two metals are connected to a voltmeter. With the two electrodes connected together, how do the Cl^{-}ions move?

Reduction Half-Reaction $\quad E^{\circ}(\mathrm{V})$
$\mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Fe}(s) \quad-0.41$
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu}(s) \quad 0.34$
a) through the external circuit from Cu to Fe
b) through the salt bridge from the Cu half-cell to the Fe half-cell
c) in random fashion
d) in the direction opposite to the movement of the sulfate ions
e) together with the Cu^{2+} ions to form an insoluble precipitate
4. Which statement is always true of the cathode in an electrochemical cell?
a) It is considered the "negative" electrode.
b) It is considered the "positive" electrode.
c) Reduction occurs here.
d) Metal is plated out here.
e) Negative ions flow toward the cathode.
5. Which reaction would be most likely to occur at the anode of a voltaic cell?
a) $2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)$
b) $\quad \mathrm{PbSO}_{4}(s)+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(s)+\mathrm{SO}_{4}{ }^{2-}(a q)$
c) $2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q)$
d) $\mathrm{PbSO}_{4}(s) \rightarrow \mathrm{Pb}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)$
e) $2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-}$
6. Which of the following statements is true concerning half-cell I of the voltaic cell shown below?

a) Zn^{2+} and NO_{3}^{-}increase with time.
b) Zn^{2+} and Cl^{-}increase with time.
c) Zn^{2+} and NO_{3}^{-}decrease with time.
d) Zn^{2+} and Cl^{-}decrease with time.
e) $\quad \mathrm{Zn}^{2+}$ decreases with time, and Cl^{-}increases with time.
7. In the following electrochemical cell, what is the oxidizing agent?
$\operatorname{Mg}(s)\left|\mathrm{Mg}^{2+}(a q) \| \mathrm{Fe}^{3+}(a q), \mathrm{Fe}^{2+}(a q)\right| \operatorname{Pt}(s)$
a) Pt
b) $\quad \mathrm{Mg}$
c) Mg^{2+}
d) Fe^{2+}
e) Fe^{3+}
8. A zinc-copper voltaic cell is represented as follows:
$\mathrm{Zn}(s)\left|\mathrm{Zn}^{2+}(1.0 M) \| \mathrm{Cu}^{2+}(1.0 M)\right| \mathrm{Cu}(s)$
Which of the following statements is false?
a) The mass of the zinc electrode decreases during discharge.
b) The copper electrode is the anode.
c) Electrons flow through the external circuit from the zinc electrode to the copper electrode.
d) Reduction occurs at the copper electrode during discharge.
e) The concentration of Cu^{2+} decreases during discharge.
9. What is the cell reaction for the following electrochemical cell? $\mathrm{Mg}\left|\mathrm{Mg}^{2+}(a q) \| \mathrm{Al}^{3+}(a q)\right| \mathrm{Al}$
a) $\mathrm{Mg}(s)+\mathrm{Mg}^{2+}(a q) \rightarrow \mathrm{Al}(s)+\mathrm{Al}^{3+}(a q)$
b) $\mathrm{Mg}(s)+\mathrm{Al}^{3+}(a q) \rightarrow \mathrm{Al}(s)+\mathrm{Mg}^{2+}(a q)$
c) $2 \mathrm{Al}(s)+3 \mathrm{Mg}^{2+}(a q) \rightarrow 3 \mathrm{Mg}(s)+2 \mathrm{Al}^{3+}(a q)$
d) $3 \mathrm{Mg}(s)+2 \mathrm{Al}^{3+}(a q) \rightarrow 2 \mathrm{Al}(s)+3 \mathrm{Mg}^{2+}(a q)$
e) $\mathrm{Al}(s)+\mathrm{Mg}^{2+}(a q) \rightarrow \mathrm{Mg}(s)+\mathrm{Al}^{3+}(a q)$
10. In a table of standard reduction potentials, the strongest oxidizing agents are the \qquad species in the half-reactions with the \qquad E° values.
a) oxidized, most negative
b) reduced, most negative
c) oxidized, most positive
d) reduced, most positive
e) none of these
11. Given:

$$
\begin{aligned}
& \mathrm{Mn}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Mn}(s) ; E^{\circ}=-1.18 \mathrm{~V} \\
& \mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu}(s) ; E^{\circ}=0.34 \mathrm{~V} \\
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l) ; E^{\circ}=1.33 \mathrm{~V}
\end{aligned}
$$

Which of the following species is the strongest reducing agent?
a) Mn^{2+}
b) Mn
c) Cu
d) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
e) Cr^{3+}
12. Given:
$\mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \rightleftarrows \mathrm{Ag}(s) ; E^{\circ}=0.80 \mathrm{~V}$
$\mathrm{Pb}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Pb}(\mathrm{s}) ; E^{\circ}=-0.13 \mathrm{~V}$
$\mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Ni}(s) ; E^{\circ}=-0.23 \mathrm{~V}$
$\mathrm{Cd}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cd}(s) ; E^{\circ}=-0.40 \mathrm{~V}$
$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Zn}(s) ; E^{\circ}=-0.76 \mathrm{~V}$
$\mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-} \rightleftarrows \mathrm{Al}(s) ; E^{\circ}=-1.66 \mathrm{~V}$
$\mathrm{Mg}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Mg}(s) ; E^{\circ}=-2.38 \mathrm{~V}$
Under standard-state conditions, which of the following metals will reduce Ag^{+}to Ag but will not reduce Ni^{2+} to Ni ?
a) Zn
b) Pb
c) Mg
d) Cd
e) Al
13. Which of the following statements is true about a voltaic cell for which $E_{\text {cell }}^{\circ}=1.00 \mathrm{~V}$?
a) It has $\Delta G^{\circ}>0$.
b) The system is at equilibrium.
c) It has $K=1$.
d) The cathode must be made of the same material as the anode.
e) The reaction is spontaneous.
14. Consider the following standard reduction potentials:
$\mathrm{Mg}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Mg}(s) ; E^{\circ}=-2.38 \mathrm{~V}$
$\mathrm{V}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{V}(s) ; E^{\circ}=-1.18 \mathrm{~V}$
$\mathrm{Cu}^{2+}(a q)+\mathrm{e}^{-} \rightleftarrows \mathrm{Cu}^{+}(a q) ; E^{\circ}=0.15 \mathrm{~V}$
Which of the following reactions will proceed spontaneously from left to right under standard-state conditions?
a) $\quad \mathrm{Mg}^{2+}(a q)+\mathrm{V}(s) \rightarrow \mathrm{V}^{2+}(a q)+\mathrm{Mg}(s)$
b) $\mathrm{Mg}^{2+}(a q)+2 \mathrm{Cu}^{+}(a q) \rightarrow 2 \mathrm{Cu}^{2+}(a q)+\mathrm{Mg}(s)$
c) $\mathrm{V}^{2+}(a q)+2 \mathrm{Cu}^{+}(a q) \rightarrow \mathrm{V}(s)+2 \mathrm{Cu}^{2+}(a q)$
d) $\mathrm{Mg}(s)+2 \mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Mg}^{2+}(a q)+2 \mathrm{Cu}^{+}(a q)$
e) $\quad 2 \mathrm{Cu}^{2+}(a q)+2 \mathrm{Cu}^{+}(a q) \rightarrow \mathrm{Mg}^{2+}(a q)+\mathrm{Mg}(s)$
15. What is $E_{\text {cell }}^{\circ}$ for the cell reaction $2 \mathrm{Cr}(s)+3 \mathrm{Sn}^{4+}(a q) \rightarrow 3 \mathrm{Sn}^{2+}(a q)+2 \mathrm{Cr}^{3+}(a q)$ given the following:

$$
\begin{aligned}
& \mathrm{Cr}^{3+}(a q)+3 \mathrm{e}^{-} \rightleftarrows \mathrm{Cr}(s) ; E^{\circ}=-0.74 \mathrm{~V} \\
& \mathrm{Sn}^{4+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Sn}^{2+}(a q) ; E^{\circ}=0.15 \mathrm{~V}
\end{aligned}
$$

a) 1.93 V
b) $\quad 0.89 \mathrm{~V}$
c) 0.59 V
d) 0.45 V
e) $\quad-0.59 \mathrm{~V}$
16. Which of the following statements is true concerning the electrochemical cell depicted below?
$\mathrm{Mg}\left|\mathrm{Mg}^{2+}(a q) \| \mathrm{Cu}^{2+}(a q)\right| \mathrm{Cu}$
$\mathrm{Mg}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Mg}(s) ; E^{\circ}=-2.38 \mathrm{~V}$
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu}(s) ; E^{\circ}=0.34 \mathrm{~V}$
a) The cell reaction is spontaneous with a standard cell potential of 2.72 V .
b) The cell reaction is spontaneous with a standard cell potential of 2.04 V .
c) The cell reaction is nonspontaneous with a standard cell potential of -2.72 V .
d) The cell reaction is nonspontaneous with a standard cell potential of -2.04 V .
e) The cell is at equilibrium.
17. If the cell is initially at standard-state conditions, which of the following statements is true?

$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Zn}(s) ; E^{\circ}=-0.76 \mathrm{~V}$
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu}(s) ; E^{\circ}=0.34 \mathrm{~V}$
a) Initially $\Delta G=-212 \mathrm{~kJ}$, and it will become more negative with time.
b) Initially $\Delta G=212 \mathrm{~kJ}$, and it will become more negative with time.
c) Initially $\Delta G=-212 \mathrm{~kJ}$, and it will become more positive with time.
d) Initially $\Delta G=212 \mathrm{~kJ}$, and it will become more positive with time.
e) Initially $\Delta G=-212 \mathrm{~kJ}$, and it will not change with time.
18. Given:
$\mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-} \rightleftarrows \mathrm{Al}(s) ; E^{\circ}=-1.66 \mathrm{~V}$
$\mathrm{I}_{2}(s)+2 \mathrm{e}^{-} \longleftrightarrow 2 \mathrm{I}^{-}(a q) ; E^{\circ}=0.54 \mathrm{~V}$
What is ΔG° for the following cell reaction?
$2 \mathrm{AlI}_{3}(a q) \rightleftarrows 2 \mathrm{Al}(s)+3 \mathrm{I}_{2}(s)$
a) $4.2 \times 10^{5} \mathrm{~J}$
b) $-6.5 \times 10^{5} \mathrm{~J}$
c) $-1.3 \times 10^{6} \mathrm{~J}$
d) $1.3 \times 10^{6} \mathrm{~J}$
e) $-4.2 \times 10^{5} \mathrm{~J}$
19. For a reaction in a voltaic cell, both ΔH° and ΔS° are positive. Which of the following statements is true?
a) $\quad E^{\circ}$ cell will increase with an increase in temperature.
b) $\quad E^{\circ}{ }_{\text {cell }}$ will decrease with an increase in temperature.
c) $E^{\circ}{ }_{\text {cell }}$ will not change when the temperature increases.
d) $\Delta G^{\circ}>0$ for all temperatures.
e) None of the above statements is true.
20. The standard free energies of formation of several species are as follows:

$$
\mathrm{kJ} / \mathrm{mol}
$$

$\mathrm{H}^{+}(a q)$
0
$\mathrm{H}_{2} \mathrm{O}(l)$ -237.0
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq}) \quad-163.0$
$\mathrm{HCOOH}(a q) \quad-350.9$
e^{-}
0
What is the standard reduction potential of formic acid in aqueous solution (that is, for
$\left.\mathrm{HCOOH}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}\right)$?
a) 0.127 V
b) $\quad 0.509 \mathrm{~V}$
c) $\quad-0.717 \mathrm{~V}$
d) -0.127 V
e) 1.946 V
21. What is E of the following cell reaction at $25^{\circ} \mathrm{C} ? E^{\circ}{ }_{\text {cell }}=0.460 \mathrm{~V}$. $\mathrm{Cu}(s)\left|\mathrm{Cu}^{2+}(0.012 M) \| \mathrm{Ag}^{+}(0.11 M)\right| \mathrm{Ag}(s)$
a) 0.282 V
b) 0.465 V
c) 0.470 V
d) 0.460 V
e) 0.488 V
22. If the cell is initially at standard-state conditions, which of the following statements is true?

$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Zn}(s) ; E^{\circ}=-0.76 \mathrm{~V}$
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu}(s) ; E^{\circ}=0.34 \mathrm{~V}$
a) Initially $K_{c}=1.5 \times 10^{37}$, and it decreases with time.
b) Initially $K_{c}=1.5 \times 10^{-37}$, and it decreases with time.
c) Initially $K_{c}=1.5 \times 10^{37}$, and it increases with time.
d) Initially $K_{c}=1.5 \times 10^{-37}$, and it increases with time.
e) Initially $K_{c}=1.5 \times 10^{37}$, and it does not change with time.
23. For the cell reaction
$2 \mathrm{MnO}_{4}^{-}(a q)+5 \mathrm{H}_{2} \mathrm{SO}_{3}(a q) \rightarrow 2 \mathrm{Mn}^{2+}(a q)+5 \mathrm{SO}_{4}{ }^{2-}(a q)+4 \mathrm{H}^{+}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l)$
the standard cell potential is 1.34 V . Which change(s) will result in an increase in the cell potential?

1. increasing the permanganate-ion concentration
2. increasing the manganese(II)-ion concentration
3. increasing the amount of $\mathrm{H}_{2} \mathrm{SO}_{3}$
a) 1 only
b) 2 only
c) 3 only
d) 1 and 2 only
e) 1 and 3 only
4. What is the copper(II)-ion concentration at $25^{\circ} \mathrm{C}$ in the cell $\mathrm{Zn}(s)\left|\mathrm{Zn}^{2+}(1.0 M) \| \mathrm{Cu}^{2+}(a q)\right| \mathrm{Cu}(s)$ if the measured cell potential is 1.04 V ? The standard cell potential is 1.10 V .
a) 0.996 M
b) 0.00940 M
c) 0.0969 M
d) $\quad 0.992 \mathrm{M}$
e) $\quad 1.00 \mathrm{M}$
5. Cathodic protection results when
a) iron is attached to a more active metal.
b) iron is amalgamated with mercury.
c) iron is tin-plated for use as a tin can.
d) iron is painted to protect it from corrosion.
e) iron is made amphoteric.
6. What half-reaction occurs at the cathode during the electrolysis of molten potassium bromide?
a) $2 \mathrm{Br}^{-}(l) \rightarrow \mathrm{Br}_{2}(l)+2 \mathrm{e}$
b) $\quad \mathrm{Br}_{2}(l)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(l)$
c) $\quad \mathrm{K}^{+}(l)+\mathrm{e}^{-} \rightarrow \mathrm{K}(s)$
d) $\mathrm{K}(s) \rightarrow \mathrm{K}^{+}(l)+\mathrm{e}^{-}$
e) $\quad 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(l)$
7. What is the half-reaction that occurs at the cathode during electrolysis of an aqueous potassium iodide solution?

\quad Reduction Half-Reaction	$E^{\circ}(\mathrm{V})$
$\mathrm{K}^{+}(a q)+\mathrm{e}^{-} \rightleftarrows \mathrm{K}(s)$	-2.93
$2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q)$	-0.83
$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{H}_{2}(g)$	0.00
$\mathrm{I}_{2}(s)+2 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{I}^{-}(a q)$	0.54
$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(l)$	1.23

a) $\quad \mathrm{K}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{K}(s)$
b) $\quad \mathrm{K}(s) \rightarrow \mathrm{K}^{+}+\mathrm{e}^{-}$
c) $\quad \mathrm{I}_{2}(a q)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(a q)$
d) $\quad \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 1 / 2 \mathrm{O}_{2}(g)+2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-}$
e) $2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q)$
28. Which of the following statements is true concerning the electrolysis of a 1.0 M aqueous solution of NaI ?

Reduction Half-Reaction $\quad E^{\circ}(\mathrm{V})$
$\mathrm{Na}^{+}(a q)+\mathrm{e}^{-} \rightleftarrows \mathrm{Na}(s) \quad-2.71$
$2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q) \quad-0.83$
$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{H}_{2}(g) \quad 0.00$
$\mathrm{I}_{2}(s)+2 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{I}^{-}(a q) \quad 0.54$
$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(l) \quad 1.23$
a) The solution becomes more basic.
b) Sodium is deposited at the cathode.
c) Hydrogen is evolved at the anode.
d) Oxygen is evolved at the anode.
e) Iodine is formed at the cathode.
29. When Au is obtained by electrolysis from $\mathrm{NaAu}(\mathrm{CN})_{2}$, what is the minimum number of coulombs required to produce 1.42 mol of gold?
a) $6.85 \times 10^{4} \mathrm{C}$
b) $1.37 \times 10^{5} \mathrm{C}$
c) $2.74 \times 10^{5} \mathrm{C}$
d) $4.11 \times 10^{5} \mathrm{C}$
e) $5.48 \times 10^{5} \mathrm{C}$
30. How many faradays are required to convert a mole of $\mathrm{NO}_{3}{ }^{-}$ions to $\mathrm{NH}_{4}{ }^{+}$ions?
a) 4
b) 5
c) 6
d) 7
e) 8

ANSWERS

Question	Answer
1	d
2	e
3	b
4	c
5	e
6	b
7	e
8	b
9	d
10	c
11	b
12	b
13	e
14	d
15	b
16	a
17	c
18	d
19	a
20	a
21	d
22	e
23	e
24	b
25	a
26	c
27	e
28	a
29	b
30	e

